wikimedia commons:fl的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列特價商品、必買資訊和推薦清單

國立中央大學 資訊工程學系 王家慶所指導 薩克蘭的 基於深度學習以及中醫理論之虹膜學體質分類系統理論 與實作 (2021),提出wikimedia commons:fl關鍵因素是什麼,來自於虹膜學、電腦輔助診斷、醫療保健、深度學習、機器學習、另類療法、生成式對抗網路、虹膜圖像生成、信號合成、超解析度影像 技術、生物辨識。

而第二篇論文國立臺北科技大學 環境工程與管理研究所 PETER HECK、胡憲倫所指導 盧卡斯的 使用生命週期評估方法研究台灣商業魚菜共生系統之環境衝擊影響 (2021),提出因為有 Aquaponics、Life Cycle Assessment、Sustainability、Conventional Agriculture、Hydroponics、Aquaculture的重點而找出了 wikimedia commons:fl的解答。

接下來讓我們看這些論文和書籍都說些什麼吧:

除了wikimedia commons:fl,大家也想知道這些:

基於深度學習以及中醫理論之虹膜學體質分類系統理論 與實作

為了解決wikimedia commons:fl的問題,作者薩克蘭 這樣論述:

在過去幾年中,深度學習開始在不同領域的醫療保健中產生巨大影響。深度學習方 法在醫療保健領域比較常見的應用在於設計一個可以輔助疾病診斷和自動分析醫學 圖像的系統,用以幫助制定治療計劃。人眼對於醫學圖像辨識的難度相當高,即便深 度學習 (DL) 方法在圖像識別方面表現良好,應用在醫學影像中仍是前所未有的挑戰。 在虹膜圖像處理中實施電腦輔助技術,並將虹膜學與中醫 (TCM) 相結合是數位圖像 處理和人工智慧研究的一個具有挑戰性的領域。本論文重點將討論如何處理虹膜診 斷中的挑戰性問題:(1) 如何開發基於深度學習的計算機輔助診斷 (CAD) 方法來自 動化虹膜學應用程序; (2) 如何處理數據集中的

類別不平衡問題;(3) 如何將圖像分 辨率提高使得能夠在後期使用深度學習技術。因此,訓練深度學習模型以識別特定 模式是一項艱鉅的任務。 對於第一個問題,本篇提出的方法結合了基於虹膜識別框架的電腦視覺技術和使用 卷積神經網路的圖像分類方法,替為醫療保健行業中創造了一種新方法。 數據集當中存在戴眼鏡的眼睛圖像、瞳孔過大和過小的圖像、虹膜位置錯位的圖像 等異常類別,造成數據集類別高度不平衡。 這種異常情況會引起虹膜分割和遮罩預 估的失敗,進而導致虹膜識別和虹膜診斷的失敗。為了解決類別不平衡問題並生成 更多稀有虹膜圖像,我們提出了一種數據增強方法,該方法使用具有梯度懲罰的條 件式 Wasserstei

n 生成對抗網路(CWGAN-GP)生成少數虹膜圖像,從而為稀有數據 收集節省了大量人力成本。 在數位影像中,圖像分辨率在各種影像處理技術皆為重要因素。若分辨率低,則難以 被虹膜學與虹膜辨識使用。為了提高圖像分辨率來獲得更好的分類效果,我們提出單 張圖像超分辨率(SISR)演算法─DDA-SRGAN,基於生成對抗式網路(GAN)中使用掩碼 注意機制(mask-attention mechanism)。

使用生命週期評估方法研究台灣商業魚菜共生系統之環境衝擊影響

為了解決wikimedia commons:fl的問題,作者盧卡斯 這樣論述:

台灣作為島國,由於可供耕作的土地面積有限,因此在糧食方面高度依賴進口。由於氣候變遷影響,每年糧食產量將會減少,同時由於人口持續增長,糧食需求將持續增加。本研究在過往的研究案例中過往的研究主要是針對農業上使用化石燃料、化肥和殺蟲劑等行為對環境和人類健康產生的負面影響。因此,有必要發展和改進現今農業的流程,以解決傳統糧食生產系統引起的例如營養污染等不利影響,以提高永續性。魚菜共生是水培法和水產養殖的結合,有望成為一種永續的食品生產方法。這種方法在近年來越來越流行,因為此方法對環境的衝擊影響低於其他農業類型。因此,探索魚菜共生系統對環境的影響可以為台灣的食品安全做出貢獻。因此,目前的研究使用了生命

週期評估 (LCA)工具來評估台灣宜蘭魚菜養殖場魚和生菜生產對環境的影響。從搖籃到農場大門的角度研究了兩個功能單位:1 公斤魚和 1 公斤生菜。本研究使用了SimaPro,並在方法學選擇了ReCiPe和累積能源需求 (CED) 方法,評估了全球變暖潛能值 (GWP)、陸地酸化 (TA)、淡水優養化化 (FWE)、海水優養化化 (MWE)、土地利用 (LU)、用水量 (WC) 和農場的能源需求等環境衝擊評估指標。1 kg 生菜會造成 11.48 kg CO2eq (GWP)、0.04 kg SO2eq (TA)、0.01 kg Peq (FWE)、1.2E-3 kg Neq (MWE)、1 m2

a eq (LU)、0.328 m3 (WC) 和207 兆焦耳 (CED)。 1 kg 魚會造成14.03 kg CO2eq (GWP)、0.049 kg SO2eq (TA)、0.012 kg Peq (FWE)、1.4E-3kg Neq (MWE)、1.22 m2a eq (LU)、0.402 m3 (WC) 和254 兆焦耳 (CED)。並將本研究結果與傳統農業、水培、氣培和水產養殖的等過往文獻研究進行了比較。 結果發現魚菜共生與其他的萵苣生產方式相比,魚菜共生在除了GWP 和 CED兩個衝擊指標以外,其餘的環境衝擊影響皆大於其他的生產方式。然而,環境永續性情境的分析結果表明,GWP、

TA、FWE、MWE、LU 和 CED這些類別的環境影響分別對於兩個功能單元可以顯著降低 70%、38%、58%、27%、14% 和 62%。可以通過用魚菜共生污泥代替肥料、加入黑水虻幼蟲作為魚飼料以及在溫室屋頂上加裝太陽能系統來降低環境衝擊。通過實施這些方法,魚菜共生系統的魚類生產將可以有比大多數的水產養殖系統更低的環境衝擊。因此,魚菜共生系統是相比於其他水產養殖系統、更有發展潛力的替代方案。對建議方法的優化以及對可行性的進一步評估將有助於對魚菜共生作為農業系統的永續性做出長期決策,進而為台灣的糧食安全做出貢獻。